Inconel nickel-chromium-based superalloys Properties Inconel alloys are oxidation and corrosion resistant materials well suited for service in extreme environments. When heated, Inconel forms a thick, stable, passivating oxide layer protecting the surface from further attack. Inconel retains strength over a wide temperature range, attractive for high temperature applications where aluminum and steel would succumb to creep as a result of thermally-induced crystal vacancies (see Arrhenius equation). Inconel's high temperature strength is developed by solid solution strengthening or precipitation strengthening, depending on the alloy. In age hardening or precipitation strengthening varieties, small amounts of niobium combine with nickel to form the intermetallic compound Ni3Nb or gamma prime (γ'). Gamma prime forms small cubic crystals that inhibit slip and creep effectively at elevated temperatures. Machining Inconel is a difficult metal to shape and machine using traditional techniques due to rapid work hardening. After the first machining pass, work hardening tends to plastically deform either the workpiece or the tool on subsequent passes. For this reason, age-hardened Inconels such as 718 are machined using an aggressive but slow cut with a hard tool, minimizing the number of passes required. Alternatively, the majority of the machining can be performed with the workpiece in a solutionised form, with only the final steps being performed after age-hardening. External threads are machined using a lathe to "single point" the threads, or by rolling the threads using a screw machine. Holes with internal threads are made by welding or brazing threaded inserts made of stainless steel. Cutting of plate is often done with a waterjet cutter. Internal threads can also be cut by single point method on lathe, or by threadmilling on a machining center. New whisker reinforced ceramic cutters are also used to machine nickel alloys. They remove material at a rate typically 8 times faster than carbide cutters. 718 Inconel can also be roll threaded after full aging by using induction heat to 1300 degrees F without increasing grain size.[citation needed] Joining Welding inconel alloys is difficult due to cracking and microstructural segregation of alloying elements in the heat affected zone. However, several alloys have been designed to overcome these problems. The most common welding method is gas tungsten arc welding.[7] New innovations in pulsed micro laser welding have also become more popular in recent years. Inconel is often encountered in extreme environments. It is common in gas turbine blades, seals, and combustors, as well as turbocharger rotors and seals, electric submersible well pump motor shafts, high temperature fasteners, chemical processing and pressure vessels, heat exchanger tubing, steam generators in nuclear pressurized water reactors, natural gas processing with contaminants such as H2S and CO2, firearm sound suppressor blast baffles, and Formula One and NASCAR exhaust systems.[8][9] Inconel is increasingly used in the boilers of waste incinerators.[10] The Joint European Torus vessel is made in Inconel.[11] Inside JET a plasma is heated to temperatures that are higher than those found in the Sun. A strong magnetic field keeps the plasma away from the vessel.