Intravenous Fluid Resuscitation Almost all circulatory shock states require large-volume IV fluid replacement, as does severe intravascular volume depletion (eg, from diarrhea or heat stroke). Intravascular volume deficiency is acutely compensated by vasoconstriction, followed over hours by migration of fluid from the extravascular compartment to the intravascular, maintaining circulating volume at the expense of total body water. However, this compensation is overwhelmed after major losses. See Fluid and Electrolyte Metabolism for maintenance fluid requirement discussion, and see Dehydration and Fluid Therapy for mild dehydration discussion. Fluids Choice of resuscitation fluid depends on the cause of the deficit. Hemorrhage: Loss of RBCs diminishes O2-carrying capacity. However, the body increases cardiac output to maintain O2 delivery (DO2) and also increases O2 extraction. These factors provide a safety margin of about 9 times the resting O2 requirement. Thus, non–O2-carrying fluids (eg, crystalloid or colloid solutions) may be used to restore intravascular volume in mild to moderate blood loss. However, once Hb declines to < 7 g/dL, in the absence of cardiac or cerebral vascular disease, O2-carrying capacity must be restored by infusion of blood (or in the future by blood substitutes). Patients with coronary or cerebral vascular disease require blood for Hb < 10 g/dL. Crystalloid solutions for intravascular volume replenishment are typically isotonic (eg, 0.9% saline or Ringer's lactate [RL]). H2O freely travels outside the vasculature, so as little as 10% of isotonic fluid remains in the intravascular space. With hypotonic fluid (eg, 0.45% saline), even less remains in the vasculature and thus is not used for resuscitation. Both 0.9% saline and RL are equally effective; RL may be preferred in hemorrhagic shock because it somewhat minimizes acidosis. However, the Ca in RL may interfere with concurrently infused drugs and may trigger clotting in transfused blood unless the ratio of blood:RL is > 2:1. For patients with acute brain injury and hemorrhagic shock, 0.9% saline is preferred. Hypertonic saline (7.5%) is also an effective crystalloid; it shifts more volume from the extravascular space and therefore requires lower absolute volume, which has practical advantages in a pre-hospital setting. Colloid solutions (eg, hydroxyethyl starch, albumin, dextrans) are also effective for volume replacement during major hemorrhage. Despite theoretical benefits over crystalloid, no differences in survival have been proven. Albumin is the colloid of choice, although it may have a negative inotropic effect. Both dextrans and hydroxyethyl starch may adversely affect coagulation when > 1.5 L is given. Blood typically is given as packed RBCs, which should be cross-matched, but in an urgent situation, 1 to 2 units of type O Rh-negative blood are an acceptable alternative. When > 1 to 2 units are transfused (eg, in major trauma), blood is warmed to 37° C. Patients receiving > 8 to 10 units may require replacement of clotting factors with infusion of fresh frozen plasma or cryoprecipitate and platelet transfusion (see also Transfusion Medicine: Blood Products). Blood substitutes are O2-carrying fluids that can be Hb-based or perfluorocarbons. Hb-based fluids may contain free Hb that is liposome-encapsulated or modified (eg, by surface modification or cross-linking with other molecules) to limit renal excretion and toxicity. Because the antigen-bearing RBC membrane is not present, these substances do not require cross-matching. They also can be stored > 1 yr, providing a more stable source than banked blood. Perfluorocarbons are IV carbon-fluorine emulsions that carry large amounts of O2. However, they have not been proven to increase survival and cannot be given in amounts sufficient to compensate for critical RBC losses. Nonhemorrhagic hypovolemia: Isotonic crystalloid solutions are typically given for intravascular repletion during shock and hypovolemia. Colloid solutions are generally not used. Patients with dehydration and adequate circulatory volume typically have a free water deficit, and hypotonic solutions (eg, D5 0.45% saline) are used. Route and Rate of Fluid Administration Standard, large (eg, 14- to 16-gauge) peripheral IV catheters are adequate for most fluid resuscitation. With infusion pump, they typically allow infusion of 1 L of crystalloid in 10 to 15 min and 1 unit of packed RBCs in 20 min. For patients at risk of exsanguination, a large (eg, 8.5 French) central venous catheter provides more rapid infusion rates; a pressure infusion device can infuse 1 unit of packed RBCs in < 5 min. Patients in shock typically require and tolerate infusion at the maximum rate. Adults are given 1 L of crystalloid (20 mL/kg in children) or, in hemorrhagic shock, 5 to 10 mL/kg of colloid or packed RBCs, and the patient is reassessed. An exception is a patient with cardiogenic shock who typically does not require large volume infusion. Patients with intravascular volume depletion without shock can receive infusion at a controlled rate, typically 500 mL/h. Children should have fluid deficit calculated (see Dehydration and Fluid Therapy: Symptoms, Signs, and Diagnosis) and replacement given over 24 h (1⁄2 in the first 8 h). End point and Monitoring The actual end point of fluid therapy in shock is normalization of DO2. However, this parameter is not often measured directly. Surrogate end points include clinical indicators of end-organ perfusion and measurements of preload. Adequate end-organ perfusion is best indicated by urine output of > 0.5 to 1 mL/kg/h. Heart rate, mental status, and capillary refill may be affected by the underlying disease process and are less reliable markers. Because of compensatory vasoconstriction, mean arterial pressure (MAP) is only a rough guideline; organ hypoperfusion may be present despite apparently normal values. An elevated arterial blood lactate level reflects hypoperfusion; however, levels do not decline for several hours after successful resuscitation. Sublingual tissue CO2 level responds more rapidly (eg, within minutes) and may be a more useful indicator. Central Venous Pressure: Because urine output does not provide a minute-to-minute indication, measures of preload may be helpful in guiding fluid resuscitation for critically ill patients. Central venous pressure (CVP) is the mean pressure in the superior vena cava, reflecting right ventricular end-diastolic pressure or preload. Normal CVP ranges from 2 to 7 mm Hg (3 to 9 cm H2O). A sick or injured patient with a CVP < 3 mm Hg is presumed to be volume depleted and may be given fluids with relative safety. When the CVP is within the normal range, volume depletion cannot be excluded, and the response to 100- to 200-mL fluid boluses should be assessed; a modest increase in CVP in response to fluid generally indicates hypovolemia. An increase of > 3 to 5 mm Hg in response to a 100-mL fluid bolus suggests limited cardiac reserve. A CVP > 12 to 15 mm Hg casts doubt on hypovolemia as the sole etiology of hypoperfusion, and fluid administration risks fluid overload. Because CVP may be unreliable in assessing volume status or left ventricular function, pulmonary artery catheterization (see Approach to the Critically Ill Patient: Pulmonary Artery Catheter Monitoring) may be considered for diagnosis or for more precise titration of fluid therapy if there is no cardiovascular improvement after initial therapy. Care must be taken when interpreting filling pressures in patients during mechanical ventilation, particularly when positive end-expiratory pressure (PEEP) levels exceeding 10 cm H2O are being used or during respiratory distress when pleural pressures fluctuate widely. Measurements are made at the end of expiration, and the transducer is referenced to atrial zero levels (mid chest) and carefully calibrated. Traumatic hemorrhagic shock: These patients may require a slightly different approach. Experimental and clinical evidence indicates that internal hemorrhage (eg, from visceral or vascular laceration or crush) may be worsened by resuscitation to normal or supranormal MAP. Some physicians advocate an MAP of 60 to 80 mm Hg as the resuscitation end point in such patients pending surgical control of bleeding. After blood loss is controlled, Hct is used to guide the need for further transfusion. To minimize the use of blood products, a target Hct of 23 to 28% is suggested. Patients who may have difficulty tolerating moderate anemia (eg, those with coronary or cerebral artery disease) are kept above 30%. A higher Hct does not improve outcome and, by causing increased blood viscosity, may impair perfusion of capillary beds. Complications Overly rapid infusion of any type of fluid may precipitate pulmonary edema. Hemodilution from crystalloid infusion is not of itself injurious, although Hct must be monitored to note whether threshold values for transfusion are met. RBC transfusion has a low risk of directly transmitting infection but in critically ill patients, it seems to cause a slightly higher rate of hospital-acquired infection. This risk may be minimized by using blood < 12 days old; such RBCs are more plastic and less likely to cause sludging in the microvasculature. Other complications of massive transfusion are discussed elsewhere (see Transfusion Medicine: Complications of Transfusion). The proper way In the usual setting, when you are prescribing intravenous fluids, you need to consider the following components: 1. Water 2. Sodium 3. Potassium Although you don’t “usually” have to worry about it you also need to be mindful of: * Calcium * Magnesium * Phosphate * Chloride To work out water requirements, the “paediatric formula” is good for adults too and I recommend it: Water infusion rate: 4 mL/kg/hr for the first 10 kg of body weight + 2 mL/kg/hr for the next 10 kg of body weight + 1 mL/kg/hr for the remainder of body weight Then work out our sodium and potassium requirements: Sodium: 1-2 mmol/kg/day Potassium: 0.5-1 mmol/kg/day So, for an otherwise healthy, euvolaemic 70 kg man: Water: * (4 mL/kg/hr x 10 kg) + (2 mL/kg/hr x 10 kg) + (1 mL/kg/hr x 50 kg) * = 40 mL/hr + 20 mL/h + 50 mL/h * = 110 mL/hr (2.6 L per day) Sodium: * 1 to 2 mmol/kg/day * = 70 to 140 mmol/day Potassium: * 0.5 to 1 mmol/kg/day * = 35 to 70 mmol/day Now, we need to convert this into the premixed bags of IV fluid: What is in a bag of fluid? 0.9% NaCl solution (aka, “normal saline”) * 1L of water * 150 mmol of Na+ * 150 mmol of Cl- 0.18% NaCl + 4% dextrose solution (aka, “4% and a fifth”) * 1L of water * 30 mmol of Na+ * 30 mmol of Cl- * 40 grams of glucose 5% dextrose * 1L of water * 50 grams of glucose