Appendix 1 CONTINUOUS VERSUS DISCRETEWE MEASURE things that are continuous. Therefore we need fractions, which are the divisions of number 1 into parts. We count things that are discrete. What exactly is the difference? Half a chair is not also a chair; half a tree is not also a tree; and half an atom is surely not also an atom. A chair, a tree and an atom are examples of a discrete unit. A discrete unit is indivisible, in the sense that if it is divided, then what results will not be that unit, that thing, any more -- half a person is not also a person What is more, a collection of discrete units will have only certain parts. Ten people can be divided only in half, fifths, and tenths. You cannot take a third of them. But consider the distance between A and B. That distance is not made up of discrete units. There is nothing to count. It is not a number of anything. We say instead that it is a continuous whole. That means that as we go from A to B, the line "continues" without a break. Since the length AB is continuous, not only could we take half of it, we could take any part we please -- a tenth, a hundredth, or a billionth -- because AB is not composed of indivisible units. And most important, any part of AB, however small, will still be a length. This distinction between what is continuous and what is discrete makes for two aspects of number; namely number as discrete units -- the natural numbers -- and number as the measure of things that are continuous. That gives rise to the "fractions." We do not need fractions for counting. We need them for measuring; for assigning a number to whatever is continuous. Problem 1. a) Into which parts could 6 pencils be divided? Halves, thirds, and sixths. b) Into which parts could 6 meters be divided? Any parts. 6 meters, which is a length, are continuous. Problem 2. Which of these is continuous and which is discrete? a) A stack of coins Discrete b) The distance from here to the Moon. Continuous. We can imagine half of that distance, or a third, or a fourth, and so on. c) A bag of apples. Discrete d) Applesauce. Continuous! e) A dozen eggs. Discrete f) 60 minutes. Continuous. Our idea of time, like our idea of distance, is that there is no smallest unit. g) Pearls on a necklace. Discrete h) The area of a circle. As area, it is continuous; half an area is also an area. But as a form, a circle is discrete; half a circle is not also a circle. i) The volume of a sphere. As volume, it is continuous. As a form, a sphere is discrete. j) A gallon of water. Continuous. We imagine that we could take any part. But k) Molecules of water. Discrete. In other words, if we could keep dividing a quantity of water, then ultimately, in theory, we would come to one molecule. If we divided that, it would not be water any more! l) The acceleration of a car as it goes from 0 to 60 mph. Continuous. The speed is changing continuously. m) The changing shape of a balloon as it's being inflated. Continuous. The shape is changing continuously. n) The evolution of biological forms; that is, from fish to man (according What do you think? Was it like a balloon being inflated? Or was each new form discrete? o) Sentences. Discrete. Half a sentence is surely not also a sentence. p) Thoughts. Discrete. (Half a thought?) q) The names of numbers. Surely, the names of anything are discrete. Half a name makes no sense. |