Lesson 23 LOWEST COMMON MULTIPLEHOW TO COMPARE FRACTIONSIn this Lesson, we will answer the following:
Here are the first few multiples of 6: 6, 12, 18, 24, 30. And here are the first few multiples of 8: 8, 16, 24, 32, 40. 24 is a common multiple of 6 and 8. It is their lowest common multiple, which we abbreviate as the LCM. The LCM is the first time that the multiples of 6 meet the multiples of 8. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Example 1. Find the LCM of 9 and 12. Solution. Go through the multiples of 12 until you come to a multiple of 9. 12, 24, 36. 36 is the first multiple of 12 that is also a multiple of 9. 36 is their LCM. Example 2. Find the LCM of 2 and 8. Example 3. Find the LCM of 5 and 20. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Compare Lesson 22, Question 4. Example 4. What is the LCM of 10 and 27? Answer. 10 and 27 have no common divisors except 1. Therefore their LCM is 10 × 27 = 270. (1 is a common divisor of every pair of numbers, but some pairs have 1 as their only common divisor. 10 and 27 are such a pair.) Example 5. What is the LCM of 8 and 12? Answer. 24. Their LCM is not 8 × 12, because 8 and 12 have common divisors besides 1; for example, 4. (To find the LCM from prime factors, see Lesson 33.) In Lesson 20, we saw how to compare fractions that have equal numerators or equal denominators. We will now see how to compare any two fractions. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Answer. Make a common denominator. Choose the LCM of 2 and 8 -- which is 8 itself. Example 2, above.
We see:
That is,
Answer. Again, we will make the denominators the same, and then compare the numerators. As a common denominator, we will choose the LCM of 4 and 32, which is 32 itself.
terms by 8,
Answer. As a common denominator, choose the LCM of 6 and 9. Answer. Choose 18.
both terms by 2. We choose a common multiple of the denominators, because we change denominators by multiplying them
Adding fractions (as we will see in Lesson 25) involves the same technique as comparing them, because the denominators -- the units -- must be the same. For example,
In the next Section, Question 4, we will see how to compare fractions by cross-multiplying. At this point, please "turn" the page and do some Problems. or Continue on to the next Section. |