Lesson 17 RATIO AND PROPORTION 1Ratio is the spoken language of arithmetic. It is the language with which we relate things of the same kind. 15 people, for example, are more than 5 people. We can express that by saying how much more, that is, 10 more, or by saying how many times more: Three times more. When we say that 15 people are three times more than 5 people, that is called their ratio. (For a discussion of saying "times more" versus just saying "times," see below.) Most important, we will see that percents are ratios. 6 people are half of 12 people -- that is the ratio of 6 to 12. In the language of percent, we say that 6 people are 50% of 12 people. Why? Because 50 has that same ratio to 100. "Half." This Lesson depends on Lesson 15: Parts of Natural Numbers In this Lesson, we will answer the following:
|
|||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||
(Euclid, Book VII. Def. 20.) Example 1. Multiple. What ratio has 15 to 5? Notice that we answer with a complete sentence beginning with the first number 15, and ending with the last number 5. For, a ratio is a relationship. The two numbers in a ratio are called the terms; the first and the second. When the first term is larger, we say it is so many times the smaller. 15 is three times 5. Example 2. Part. What ratio has 5 to 15? Answer. 5 is the third part of 15. That is called the inverse ratio of 15 to 5. The terms are exchanged. Notice again that we answer with a complete sentence beginning with the first term and ending with the second. "5 is 15." Example 3. Parts. What ratio has 10 to 15? Answer. 10 is two thirds of 15. "Three times." "The third part." "Two thirds." Those are names of the three types of ratio. One number is a multiple of the other (so many times it), a part of it, or parts of it. Example 4. What ratio has 12 to 6? Answer. 12 is two times 6. Or we could say, "12 is twice as much as 6," or "12 is double 6." These are the various ways of expressing the ratio, the relationship, of 12 to 6. Inversely, 6 is half of 12. When trying to express a ratio, if the student will say a sentence, and then consider the truth of that sentence, the fact will speak for itself. Example 5. What ratio has 80 to 8? Inversely, what ratio has 8 to 80? Answer. 80 is ten times 8. Therefore, inversely, 8 is that part of 80 with the ordinal form of ten: 8 is the tenth part of 80. (For the relationship between 8 and 8-with-a-0 after it, i. e. 80, see Lesson 2 and the problems that follow.) Example 6. What ratio has 800 to 8? Inversely, what ratio has 8 to 800? Answer. 800 is one hundred times 8. Inversely, 8 is the hundredth part of 800. |
|||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||
Example 7. What does 200% mean? Answer. Since 200% is two times 100%, then 200% means two times. 200% of 8 -- two times 8 -- is 16. Example 8. How much is 300% of 8? Answer. 24. 300% of 8 means three times 8, because 300% is three times 100%. 100% is the whole, in this case, 8. 50% means half, because 50% is half of 100%. 50% of 8 is 4. 200% means two times; 300% means three times; 400% means four times; and so on. Whatever ratio the percent has to 100%, that is the ratio we mean. We see that any number less than 8 will be less than 100% of 8. While any number more than 8 will be more than 100%. We have, as it were, two languages: The language of ratio -- "Half," "Three quarters," "Twice as much" -- and the language of percent: 50%, 75%, 200%. The student must become fluent in both languages, and in translating from one to the other. Example 9. Compare the following: a) 10 has what ratio to 40? b) 10 is what percent of 40? c) 7 has what ratio to 21? d) 7 is what percent of 21? Answers. a) 10 is the fourth part of 40, or a quarter of 40, or a fourth of 40. b) 10 is 25% of 40. 25% means a quarter, because 25% is a quarter of 100%.
Example 10. How much is 250% of 8? Answer. 250% means two and a half times. It is 200% + 50%. 250% is a mixed number of times -- expressed as a percent. 250% of 8, therefore, is 16 + 4 = 20.
Example 12. Calculate mentally: 125% of $7.80. Answer. 125% means one and a quarter times: 100% + 25%. Now, to take a quarter of $7.80, we may think of it as $8.00 minus 20 cents. A quarter of $8.00 is $2.00. A quarter of 20 cents is 5 cents. Therefore,
Practice with these problems continues in Lesson 28. Saying "times more" versus saying "times" 15 is more than 5. How many times more? As Merriam-Webster's Dictionary of English Usage puts it: So, 15 is more than 5. How many times more? 15 is three times more than 5. At this point, please "turn" the page and do some Problems. or Continue on to the next Section: Proportions 1st Lesson on Parts of Natural Numbers |